US ERA ARCHIVE DOCUMENT

Seeking Common National Assessment of the Human Disturbance Gradient

Robert M. Hughes (Dynamac Corporation)

8

The Aquatic Life Uses
Steering Group

Objectives

- Provide rationale for human disturbance gradient (HDG)
- Summarize recent studies concerning biological responses to land use
- Outline key components of HDG
- Summarize interstate workshop results

What we may learn as "attainable" improves with BMP implementation!

Stressor Gradient

Human Activities or Land Use (Disturbance) **Stressors** (Habitat Responses) **Biological Responses**

Rationale for Human Disturbance Gradient (HDG)

- Landscape condition affects in-stream condition
- Human disturbance is root source of most-manageable stressors
- Landscape perspective is critical for stream protection and restoration
- Drainage perspective is necessary for understanding & conserving biota

Rationale for Human Disturbance Gradient (HDG) (continued)

- Understanding landscape condition assists in diagnosing stressors
- Catchment condition often represents half the variability in biological response scores
- Catchment condition is essential for screening & selecting reference sites
- 1:1 dose responses rare; wedges & clouds common

Human Disturbance

IBI vs. Catchment Land Use

```
    Steedman (ONT)

                          ↓ 0-80% urban
• Roth (MI) 125-80% ag.;
                         ↑ 0-15% urban

    Klauda (MD)

                          1 20-40% urban
                          ↓ >10% urban

    Wang(WI) |>50% ag.;

    Wang (WI) 0-90% ag.;

                          >20% urban

    Fitzpatrick (WI) 20-60 % ag

    Karr (WA)

                             0-60% urban

    Snyder (WV) 35-75% ag.; * 0-30% urban

    Mebane (PNW) >15% irrigated ag.

• Bryce (MAHA) √>50% ag.; 10-20% mined
```


(from Klauda et al. 1998. Environ. Monitor. Assess. 51:299-316)

% Catchment Agricultural Land Cover (from Wang et al. 1997. Fisheries 22(6):6-12)

IBI vs. Riparian Land Use

- Steedman (ONT) ↓70-100% deforested
- Roth (MI) \$\frac{1}{2}\$0-100% ag.; \$\frac{1}{2}\$0-10% urban
- Jones (GA)↓ >2-3 km deforested
- Fitzpatrick (WI) ↓>20% ag.
- Bryce (OR) ↓ >50% ag.; ↓ >20% urban
- Snyder (WV) NS effect

(from Steedman. 1988. Can. J. Fish. Aquat. Sci. 45:492-501)

HDG Layout

- Six tiers (A-F)
- Six major stressor classes
 - Habitat structure
 - Flow regime
 - Water quality
 - Toxics & bioengineered chemicals
 - Energy sources
 - Biotic interactions

HDG Layout (continued)

- Five major disturbance classes
 - Landscape Character
 - Riparian Condition
 - Barriers
 - Channel Morphology (map scale)
 - Atmospheric Deposition

Increasing
Stressor
Intensity
(Catchment Scale)

Industrial

Suburban

Urban

Raw Clearcut
Scrub/Sapling
Open 2nd Growth
Closed 2nd Growth
Select Cut
LSOG

CAFO
Irrigated
Conventional
Low/no Till
Intensive Graze
High Swidden
Patch Farm
Rotated Graze
Patch Swidden

Large Lot Res.
Rural Res.
Pioneer

<u>Silviculture</u>

<u>Agriculture</u>

Urbanization Tier

Workshop Summary & Future Needs

- State participants classified site & basin data into HDG tiers
- 80 % agreement on tiers for Northern Forest, Midwest & Southeast work groups
- HDG must be modified for plains, deserts & large rivers
- Linkages between catchment/riparian HDG & stressors must be refined